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 A B S T R A C T

Field-programmable gate array (FPGA) is a hardware-based platform widely used in safety-related systems. 
FPGA development involves synthesis, placement and routing, with designs ultimately downloaded onto the 
device. Commercial FPGA synthesis software converts register-transfer level (RTL) designs into gate-level 
representations. Standards such as NUREG/CR-6421, IEEE Std 7-4.3.2, EPRI NP-5652, and EPRI TR-106439 
require verification of these tools, while IEC 62566 mandates static analysis, including equivalence checking, 
for nuclear power plant applications. This paper introduces CVEC, a customized VIS-based equivalence checker 
that verifies the correctness of FPGA synthesis software. It performs equivalence checking between RTL designs 
and gate-level designs synthesized using Synopsys Synplify Pro within the Libero IDE. When verification is 
successful, it ensures that these softwares operate correctly at the synthesis level. Two case studies demonstrate 
the effectiveness of CVEC in verifying the functional correctness of commercial FPGA synthesis softwares.
1. Introduction

A small modular reactor (SMR) is an advanced nuclear reactor 
currently gaining attention. Several documents and studies discuss the 
potential use of field-programmable gate arrays (FPGAs) in SMRs (NuS-
cale, 2020; U.S. Nuclear Regulatory Commission, 2016; Cummins and 
Quinn, 2021). FPGA-based controllers are being utilized not only in 
SMRs but also in the broader nuclear power plant (NPP) domain, 
with several studies exploring their applications (Farias et al., 2016; 
Zhang and Wu, 2024; Piggin and Sampson, 2016). Moreover, FPGA 
technology is being applied in various applications, including cyber–
physical systems (CPSs) (Gautham, 2020), electric vehicles (Bukya 
et al., 2024), internet of things (IoT) (Lee and Park, 2021), autonomous 
vehicles (Ahn et al., 2019), grid systems (Allani et al., 2021), neural 
networks (Wang et al., 2022), quantum processing (Xu et al., 2021), 
and more.

As stated in IEEE Std 1012-2016 (Institute of Electrical and Electron-
ics Engineers (IEEE), 2016a), IEEE Std 7–4.3.2-2016 (Institute of Elec-
trical and Electronics Engineers (IEEE), 2016b) and IEC 60880:2006 (In-
ternational Electrotechnical Commission (IEC), 2006), digital devices 
used in safety systems of NPP should be thoroughly verified and val-
idated throughout the entire software development life-cycle (SDLC). 
However, an FPGA is a hardware-based platform and works with a 
thoroughly different SDLC from micro-processor based platforms such 
as programmable logic controller (PLC). The FPGA software is first 
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modeled with hardware description languages (HDLs) such as Ver-
ilog (Institute of Electrical and Electronics Engineers (IEEE), 2001) and 
VHDL (Institute of Electrical and Electronics Engineers (IEEE), 2008), 
and then subsequently synthesized into gate-level designs. Commercial 
logic synthesis tools and electronic design automation (EDA) tools 
(e.g. Synopsys Synplify Pro (Synopsys, 2015), etc.) automate the FPGA 
logic synthesis process. Then these designs are placed and routed into 
physical layouts by EDA tools.

According to NUREG/CR-6421 (U.S. Nuclear Regulatory Commis-
sion, 1996b), IEEE Std 7–4.3.2 (Institute of Electrical and Electronics 
Engineers (IEEE), 2016b), Electric Power Research Institute (EPRI) 
NP-5652 (Electric Power Research Institute (EPRI), 2014) and EPRI 
TR-106439 (Electric Power Research Institute (EPRI), 1996), commer-
cial grade items (i.e., commercial-off-the-shelf (COTS) items) used in 
nuclear safety-related application must be verified through sufficient 
acceptance methods to assure their functionality. Also, in IEC 62566-
2:2020 (International Electrotechnical Commission (IEC), 2020), it is 
stated that static analysis including equivalence checking is required for 
the HDL-programmed devices (HPD) (e.g., FPGA) used in the nuclear 
safety applications. While the logic synthesis tools can be formally 
verified with compiler verification techniques (Hoare, 2003) directly, 
it is hard to apply them to the products of 3rd-party developers. An 
alternative solution is to do the tool verification indirectly as part of 
the COTS software dedication (Yoo et al., 2015).
https://doi.org/10.1016/j.anucene.2025.111484
Received 6 January 2025; Received in revised form 23 March 2025; Accepted 12 A
306-4549/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
pril 2025
data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/anucene
https://www.elsevier.com/locate/anucene
https://orcid.org/0000-0002-4904-5635
mailto:jbyoo@konkuk.ac.kr
https://doi.org/10.1016/j.anucene.2025.111484
https://doi.org/10.1016/j.anucene.2025.111484


Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484 
‘‘For a specific input program (e.g., Verilog program), if a synthesis tool 
produces a program (e.g., Netlist ) which shows the same behavior for all 
possible cases, we can claim that the synthesis tool works correctly at least 
for the input program.’’

There are several studies or commercial formal verification tools 
which can be used for our purpose, i.e., the correctness verification 
(dedication) of commercial FPGA logic synthesis tools, such as Formal-
Pro (Siemens, 0000a), Conformal Equivalence Checker (Cadence, 2017) 
and Formality (Synopsys, 2019). They are, however, too case-sensitive 
to be comfortable with various combinations of EDA and verification 
tools, as we summarized in Yoo et al. (2015). For instance, we cannot 
use FormalPro, a formal equivalence checking tool for FPGA design, 
in combination with Libero IDE (Microchip, 2014), an IDE for FPGA 
design, and Synopsys Synplify Pro (Synopsys, 2015) synthesizer, a logic 
synthesis tool for FPGA. This was the combination of the project we 
worked on. Since we cannot expect the vendors to provide a specific ex-
tension that cannot make a profit, we need to develop a new customized 
solution for this combination.

This paper proposes a Customized VIS-based Equivalence Checker 
(CVEC), to check behavioral equivalence of a Verilog program and 
a Netlist synthesized from it under the combination of the Synopsys 
Synplify Pro synthesizer in the Libero IDE EDA tool. In the FPGA indus-
try, Synopsys Synplify Pro and Libero IDE are already being integrated 
and used together (Synopsys, 2009). CVEC uses verification engine, 
verification interacting with synthesis (VIS) (Brayton et al., 1996), a 
widely-used open-source system for formal verification, synthesis, and 
simulation of finite-state systems. It reads two input programs (i.e.,
Verilog and electronic design interchange format (EDIF)) and checks 
their behavioral equivalence for all possible input combinations using
VIS. This paper also proposes a set of assumptions, translation rules, 
and a translator to make the VIS-based equivalence checking possible, 
since VIS cannot read the Verilog and EDIF files directly.

In order to demonstrate the effectiveness and applicability of the 
proposed technique, CVEC, we performed a case study with two exam-
ples of bistable processor (BP) programs in reactor protection system 
(RPS), excerpted from a preliminary version of Korean nuclear power 
plants. We also tried to compare the performance of CVEC with a 
commercial verification tool FormalPro, although we had to change the 
logic synthesis tool into Precision FPGA (Siemens, 0000b) instead.

The paper is organized as follows: Section 2 provides background in-
formation about the conventional FPGA development process, EDIF and 
the VIS verification system. Section 3 surveys related researches, and 
Section 4 overviews the CVEC and explains the details of its verification 
process. The case studies with two RPS BPs of Korean nuclear power 
plants is presented in Section 5. In conclusion, Section 6 concludes the 
paper and provides remarks on future research extensions. Appendix 
includes examples of translations from EDIF to BLIF-MV (Brayton, 
1991).

2. Background

2.1. Development and V&V of FPGA

The development life-cycle of FPGA-based digital I&Cs basically 
follows IEC 61513 (International Electrotechnical Commission (IEC), 
2011). An FPGA-based system, however, has a specific feature to con-
sider further. The phase of the development life cycle involving HDL 
programming is classified as software, whereas the phase that begins 
after downloading it onto a chip is classified as hardware. Therefore, 
FPGA development should adhere to both IEC 60880 (International 
Electrotechnical Commission (IEC), 2006) for software compliance and 
IEC 60987 (International Electrotechnical Commission (IEC), 2007) 
for hardware compliance. ⟨Fig.  1⟩ (Jung et al., 2016) illustrates the 
V-model of FPGA development life-cycle described in IEC 62566 (In-
ternational Electrotechnical Commission (IEC), 2012), integrating both 
software and hardware aspects. The left-hand side of the ⟨Fig.  1⟩
2 
Fig. 1. The V-shaped life-cycle of FPGA development.

represents the software aspect of a typical FPGA development life-cycle, 
as guided in NUREG/CR-7006 (U.S. Nuclear Regulatory Commission, 
1996a).

The FPGA software development is fully automated by synthesis 
softwares (i.e., FPGA logic synthesis tools or EDA tools) of FPGA 
vendors. After programming a register transistor logic (RTL) design 
with HDLs, the design is transformed into a gate-level design (i.e.,
netlist) by synthesis softwares such as Synopsys Synplify Pro (Synopsys, 
2015), Precision FPGA (Siemens, 0000b) and Cadence Virtuoso Digital 
Implementation (Cadence, 2019).

For the verification and validation (V&V) of the FPGA development 
process, designers perform simulation-based verification at each stage of 
the FPGA software development life-cycle to ensure that each artifact 
complies with its requirements specification. The first simulation per-
formed on RTL designs is behavioral simulation. The goal of behavioral 
simulation is to ensure that all requirements are correctly and accurately 
implemented into the RTL design. Since RTL designs are typically 
created manually by most designers, the process is time-consuming. 
After synthesis from RTL design to gate-level design, designers perform
logic simulation to confirm that all functionalities were preserved during 
the synthesis. After the place & route (P&R) process, designers can 
validate the layout via post-layout simulation to ensure that the layout 
meets all timing requirements. Simulators such as ModelSim (Siemens, 
0000c) and Questa Simulator (Siemens, 0000d) are widely used for 
the simulation-based verification. Every simulation-based verification 
at each step is performed individually and independently, and it is 
considered as one of the key factors for efficient FPGA development.

The V&V process for the FPGA development also includes equiv-
alence checking (Burch et al., 1994). Equivalence checking is one of 
the formal verification techniques, which uses formal techniques to 
determine whether two versions of a design are behaviorally equiv-
alent or not. Equivalence checking can prove that two given designs 
have the same functionality, i.e., it determines ‘‘whether they show 
the same behavior for all possible input sequences.’’ It can ensure that 
an RTL design and the gate-level design synthesized from the RTL 
design always show the same behavior. This verification technique 
can be performed quickly and without the need for test vectors. As 
the automated synthesis by synthesis softwares becomes increasingly 
sophisticated, unintended and unexpected behaviors in FPGA designs 
may arise. At this point, equivalence checking can help us ensure that 
the synthesis process was executed correctly. Commercial tools such as
FormalPro, Conformal Equivalence Checker, and Formality can be used 
for equivalence checking; however, their applicability is limited.

2.2. EDIF

EDIF (Electronic Industries Association, 1998) is a vendor-neutral 
format in which to store netlists and schematics. It was one of the 
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first attempts to establish a neutral data exchange format for the EDA 
industries.

The latest version of EDIF is 4.0.0, but most FPGA vendors still use 
the version 2.0.0 which was first approved as the standard ANSI/EIA-
548-1998. Nevertheless the effort for the neutral data exchange, FPGA 
vendors keep modifying the EDIF format slightly and appropriately 
for their own tools. The EDIFs of various FPGA vendors are now not 
compatible with each other, unfortunately. This paper uses the EDIF of
Libero IDE.

2.3. VIS verification system

VIS (Brayton et al., 1996) is a verification system that integrates 
formal verification, simulation and synthesis for hardware systems 
modeled as finite-state machines (FSMs). The VIS system supports fair 
computational tree logic (CTL) model checking (Clarke et al., 1999), 
language emptiness checking, sequential equivalence checking, cycle-
based simulation, and hierarchical synthesis. It processes hardware 
designs described in (Synchronous) Verilog (Chouy, 1997) or BLIF-
MV (Kukimoto, 1996) formats, using an in-house translator vl2mv to 
convert Verilog designs into the BLIF-MV  representation for efficient 
analysis and synthesis.

In our earlier work (Yoo et al., 2009), we proposed a verification 
technique that translates a function block diagram (FBD), a graph-
ical programming language defined in IEC 61131-3 (International 
Electrotechnical Commission (IEC), 2013), into a semantically equiv-
alent Verilog program. We then attempted to prove the behavioral 
equivalence between two successive revisions using the sequential 
equivalence checking capabilities of VIS. We also developed VIS An-
alyzer (Jung et al., 2010) to provide a graphical interface designed to 
help domain experts fully utilize the powerful features of VIS without 
being overwhelmed by its primitive, text-based interface.

VIS has since been upgraded to newer versions, such as academic 
industrial-strength verification tool (ABC) (Brayton and Mishchenko, 
2010) and incremental inductive model checker (IImc) (University of 
Colorado at Boulder, 2016). There are several differences between VIS 
and ABC, IImc. For model checking algorithms, ABC is based on and-
inverter graphs (AIGs) and IImc is based on IC3, while VIS is based 
on FSMs. Therefore, VIS can perform sequential equivalence checking 
based on FSM, while the other two tools cannot. Instead, ABC per-
forms combinational equivalence checking, and IImc cannot perform 
equivalence checking, since it is optimized for solving model checking 
problems. Also, while VIS focuses on both synthesis and verification, 
ABC focuses more on synthesis than verification, and IImc focuses more 
on verification than synthesis. Many successful studies have demon-
strated the value of VIS as one of the most mature equivalence checkers 
to date.

2.4. COTS software dedication and equivalence checking

As mentioned in Section 1, various standards and guidelines demand 
the verification of COTS items (especially software in this paper) to 
accept them in safety-related applications. In EPRI NP-5652 and EPRI 
TR-106439, there are 4 methods that can be used to accept COTS items 
as shown:
(1) Special Tests and Inspections
(2) Commercial Grade Survey of Supplier
(3) Source Verification
(4) Acceptable Supplier/Item Performance Record

One of the ways to verify the COTS items is using the formal 
verification techniques such as equivalence checking. This can be an 
example for method (1) presented in EPRI NP-5652 and EPRI TR-
106439. Also, in IEC 62566, equivalence checking is mentioned as one 
of the static analysis techniques to verify HPD used in nuclear safety 
applications.
3 
In recent years, the verification by equivalence checking has become 
widely accepted in integrated circuits (ICs) fields, in place of the 
simulation-based techniques. There also exists some studies for logic 
equivalence checking with formal verification techniques (Hu and Chu, 
2023; Ni et al., 2023). Many international standards (RTCA, 2000; In-
ternational Electrotechnical Commission (IEC), 2000) gradually require 
to use the formal verification techniques, too. There are several well-
known formal verification tools such as FormalPro (Siemens, 0000a),
Conformal Equivalence Checker (Cadence, 2017), Formality (Synopsys, 
2019) and VIS (Brayton et al., 1996) which is embedded in CVEC. Times 
(2001) provides further detailed information on the tools.

3. Related works

There are some research related to dedication of COTS software. 
In Kim et al. (2010), authors select safety features as functional and 
performance requirements for method (1). They applied functional 
benchmarking test method for the COTS dedication of QNX real time 
operating system (RTOS) to evaluate its sustainability for safety-related 
applications in the NPP domain. The results demonstrated that QNX 
RTOS has significant potential as a commercial operating system ca-
pable of meeting safety and performance requirements necessary for 
deployment in digital systems within NPPs. This study also established 
valuable criteria for comparing QNX RTOS with other commercial 
RTOS options, providing a reliable basis for selection.

In Kim et al. (2007), authors discuss the process and results of 
the COTS dedication of the PROFIBUS fieldbus message specification 
(FMS) driver software. PROFIBUS FMS driver is a high-level communi-
cation module used in NPP safety systems such as POSAFE-Q. In this 
research, methods 1, 2, and 4 presented in EPRI NP-5652 and TR-
106439 are applied to PROFIBUS FMS driver software. These methods 
performed by telecommunication technology association (TTA) and 
Hilscher Company successfully validated the PROFIBUS FMS driver 
for safety-related applications. Also, a certification from PROFIBUS 
national organization (PNO) confirmed the reliability of software. The 
study highlights the importance of combining multiple methodologies 
to ensure comprehensive validation of COTS software.

In Jung et al. (2016), one of our previous works, a process for 
evaluating the suitability of commercial grade softwares indirectly used 
for FPGA logic synthesis in FPGA development is proposed. COTS 
software as the target of evaluation are identified and both the safety 
category of the target system and the usage category of the COTS 
software are determined. This categorization enables them to assign an 
appropriate safety category to the COTS software. Based on this, they 
define a list of dedication criteria for each category. Subsequently, they 
refine the acceptance criteria and select suitable acceptance methods, 
including specific V&V techniques. Finally, the selected acceptance 
methods and techniques are applied to the target software through the 
dedication process to verify compliance with the acceptance criteria. 
A case study on Synopsys Synplify Pro demonstrates that the proposed 
evaluation criteria and acceptance process are effective for assessing 
indirect tools used in FPGA development.

4. A customized VIS-based equivalence checker

⟨Fig.  2⟩ shows an overview of the VIS-based equivalence checker
CVEC, customized for the Synopsys Synplify Pro synthesizer in the Libero 
IDE EDA. There are 4 phases to perform equivalence checking in CVEC
and each of them is described in the following subsections.
(Phase I) VerilogtoV4VIS transformation
(Phase II) EDIFtoBLIF-MV  transformation
(Phase III) VIS equivalence checking
(Phase IV) Post-analysis and visualization
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Fig. 2. A customized VIS-based equivalence checker: CVEC.

4.1. [Phase I] VerilogtoV4VIS transformation

In the first phase, we first provide Verilog program as the first 
input for CVEC. In VIS, the Verilog HDL front-end called vl2mv trans-
lator reads most elements of Verilog, then it compiles a subset of 
Verilog into BLIF-MV. While vl2mv reads Verilog, it either ignores or 
rejects some Verilog elements without notification. Therefore, CVEC
transforms a typical Verilog program into a customized Verilog for 
VIS (i.e., Verilog4VIS (V4VIS) (Kim et al., 2015)) program, in order 
to make vl2mv read a typical Verilog programs correctly. Also, CVEC
includes a rule checker called Verilog4VIS Checker to verify whether the 
assumptions and constraints for a Verilog program are satisfied, and 
recommends appropriate modifications to transform Verilog program 
into a Verilog4VIS program. A Verilog4VIS program can be developed 
through iterative verification and refinement. We introduce below a 
total of 7 assumptions and constraints for VerilogtoV4VIS transformation 
that must be followed in order to ensure the correct functioning of the 
VIS verification engine.

Assumptions and constraints 
(1) Use the clock clk only at the statement always @(posedge clk)
(2) Do not use the time delay
(3) Do not use the non-blocking statement
(4) All reg variables should be initialized with 0
(5) Do not use the integer type variable
(6) Do not use the size of bits when defining parameter
(7) Do not use the negedge edge 

The assumptions and constraints on the Verilog modeling are as 
follows:

The first assumption states that the VIS interprets a Verilog program 
as a discrete-time finite state machine with an implicit global clock, clk. 
This alignes the Verilog program with the input format of Symbolic 
Model Verifier (SMV) used in SMV (Cimatti et al., 1999) or PROMELA 
language used in SPIN (SPIN, 2016). Since all behaviors within the
always statements are synchronized to a single clock, clk, VIS can 
execute (or simulate) a BLIF-MV model without requiring the clk. Con-
sequently, clocks are not utilized in BLIF-MV, and all clks are ignored. 
Additionally, all clock-related elements and conditions in always @(…)
statement are ignored by vl2mv. Therefore, the clk should only be used 
for synchronization purposes, such as in always @(posedge clk), and not 
for any other purposes.

If constraints (2) and (3) are not satisfied, vl2mv may produce a 
compilation error. According to assumption (1), no time delays for 
gates or wires are allowed yet, since the BLIF-MV does not contain 
4 
an element to implement time delays. Additionally, non-blocking state-
ments are not permitted; all statements must be written as blocking 
statements.

Constraint (4) requires that all reg variables to be initialized with 
0. No other value is allowed, as Libero IDE assigns a default value of 
0 to the EDIF elements corresponding to the reg variables, regardless 
of their initialization. However, VIS requires all reg variables to be 
initialized with an appropriate value. Our solution is to initialize all reg
variables to 0, regardless of their original values. We anticipate that 
this will not result in any side-effect, since all DI&C systems have a 
distinguished procedure for the system boot-up, such as temporarily 
ignoring all output values (i.e., shutdown alarms) during the initial 
phase of boot-up.

We cannot use integer type variables in the VIS verification, since 
the VIS lacks a mechanism to initialize them, as specified in constraint
(5). Our suggestion is to replace an integer variable with a reg [31:0]
variable during the initialization phase, as it functions in exactly the 
same way. Constraint (6) also restricts the detailed definition of param-
eter variables (e.g., using [15:0] of bit array), as it may implicitly lead 
to a loss of information. We cannot use the negedge edge as constraint
(7), since VIS only supports the posedge edge.

4.2. [Phase II] EDIFtoBLIF-MV transformation

In the second phase, we provide the second input, an EDIF pro-
gram for CVEC. Synopsys Synplify Pro in Libero IDE synthesizes an 
EDIF program from the Verilog4VIS program. Then CVEC transforms 
mechanically synthesized gate-level design of EDIF (i.e., Netlist) into 
a BLIF-MV program. We provide a transformation process of 3 steps 
and translation rules of 6 categories, which are specialized for the EDIF 
format of Libero IDE. We also provide the mechanical EDIFtoBLIF-MV
translator in CVEC to implement the process and rules.

The transformation from EDIF to BLIF-MV includes a three-step 
process, consisting of (II-1) Parsing, (II-2) Pre-processing and (II-3) 
Translation. The first step (II-1) parses an EDIF file and stores it in an 
internal data structure. All EDIF elements except auxiliary information 
such as the cell information are converted into an internal data struc-
ture. The next step (II-2) performs a pre-processing such as deleting 
unnecessary information in the internal data structure. For example, 
as all clks in Verilog are ignored in BLIF-MV, we need to delete these 
information. Also, all ports not used but defined in an EDIF should 
explicitly have a default value of 0. The last step (II-3) transforms the 
pre-processed internal data into a BLIF-MV format according to the 
translation rules we developed.

The 3-step transformation transforms all of the information of cells
in an EDIF into an equivalent BLIF-MV format, which serves as an in-
ternal input front-end of the VIS verification system. The whole process 
was also implemented into a CASE tool EDIFtoBLIF-MV, embedded in
CVEC. The details of each transformation step, except (II-1 Parsing), is 
as follows.

4.2.1. (II-2) Pre-processing
After parsing an EDIF file into an internal data structure of CVEC, 

we need to perform a few pre-processing. First, all informations related 
to the clock clk should be deleted in accordance with the assumption 
(1) in [Phase I]. As EDIF is close to hardware layout, it includes the 
voltage VCC and ground GND cells, even if they are not presented in 
Verilog programs. We need to explicitly assign 1 and 0 to their output 
port, respectively. All unused ports (i.e., bits) should have an explicit 
value by connecting them to the GND cell. If a port is not connected to 
any net, the translated BLIF-MV cannot be processed by the VIS. The 
processes included in this step is represented below. 
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Pre-processing 

(1) Delete all information (e.g., port, instance and net) related to the 
clock clk
(2) Assign 1 to VCC
(3) Assign 0 to GND
(4) Assign 0 to all unused ports 

4.2.2. (II-3) Translation into BLIF-MV
CVEC introduces translation rules from EDIF to BLIF-MV, and imple-

ments an automatic translation, EDIFtoBLIF-MV, which is a follow-up 
study of Lee (2013). The translation rules are divided into 5 categories, 
and each category is explained and described below as pseudo-code. 
The examples of these translations are demonstrated in Appendix: 
Examples of The Translations from EDIF to BLIF-MV.

[Rule 1] Translation of cells
Rule 1 defines a rule to express external structure of an EDIF unit, 

called cell, in BLIF-MV format. Each cell in working library is translated 
directly into a .model of BLIF-MV. The name of cell in EDIF would be 
the name of model in BLIF-MV. In pseudo-code, it would be expressed 
as in ⟨Fig.  3⟩.

Fig. 3. Translation rule for cells.

[Rule 2] Translation of ports and arrays
Rule 2 defines the translation of each port in EDIF into .inputs

or .outputs of BLIF-MV. In pseudo-code, it would be expressed as in 
⟨Fig.  4⟩. The input and output ports in an EDIF cell are converted into 
.inputs and .outputs in BLIF-MV. If the port type of an input port is an
array, the port name becomes the base name of the .inputs in BLIF-MV; 
EDIF does not have an array of the output ports. Additionally, in EDIF, 
an array of the input ports has a starting index (startIndex) and 
an ending index (endIndex). In BLIF-MV, the port names and their 
corresponding index values within the specified range are added to the 
.inputs section. On the other hand, if the port type is not an array, the 
port name is simply converted into the name of .inputs or .outputs in 
BLIF-MV.

Fig. 4. Translation rule for ports and arrays.

[Rule 3] Translation of property functions
Rule 3 defines two ways of translating output ports of EDIF into 

BLIF-MV. In pseudo-code, it can be expressed as in ⟨Fig.  5⟩. The output 
port in the cell can include a keyword property function, which defines 
the function of the cell. If the cell is a sequential cell, function in an 
5 
EDIF is translated into .latch of BLIF-MV, and a keyword .reset has 
to be defined before the .latch. This is implemented by the function
sequentialToBLIFMV(edifCell), shown from line 14 to line 28 
in ⟨Fig.  5⟩. An example for the sequential D-Flip-Flop (DFF) cell is 
included in ⟨Fig.  A.3⟩ in Appendix.

On the other hand, if the cell is a combinational cell, the function 
is expressed as a truth table using the keyword .table. The property 
function in a cell defines the truth table of functionality. In the case of 
combinational cells, logic operators such as + (OR), &(AND), ∧(XOR) 
and !(NOT) can be used. Also, multiple logic operators can be used to 
define the property function. For example, combinational cell can have 
the property function (𝑠𝑡𝑟𝑖𝑛𝑔 ‘‘A & (B + C)’’), which can be expressed 
as 𝐴𝐵𝐶 + & in postfix notation to be translated into BLIF-MV. The 
examples for the combinational cell are demonstrated in the second 
and the third example in ⟨Fig.  A.3⟩.

Fig. 5. Translation rule for property functions.

[Rule 4] Translation of cells including instances
Each cell in EDIF has contents to implement its functionality. [Rule 

4] defines the case where an EDIF cell includes instance inside its 
contents. The psuedo-code to express Rule 4 is shown in ⟨Fig.  6⟩.
cellRefName in line 6 of the code represents the referenced cell 
type in EDIF. When an instance is present within the cell, its name 
and the cell it represents determine the name of .subckt in the BLIF-
MV format, as seen in line 8 of the code. From line 13 to line 20, each
connection in the instance is represented, considering the multiple input 
and output ports in EDIF.

[Rule 5] Translation of cells including connections
Rule 5 connects the called cells with each other from input ports 

to output ports. The pseudo-code of Rule 5 is represented in ⟨Fig.  7⟩ If 
the net in EDIF contains only the joined keyword, the code from line 7 
to line 18 is applied. The case of calling member cells using the renamed
keyword is represented in from line 20 to line 31 of the code.
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Fig. 6. Translation rule for cells including instances.

Fig. 7. Translation rule for cells including connections.

⟨Fig.  8⟩ depicts the EDIFtoBLIF-MV  translator, implementing the 
proposed transformation process from EDIF to BLIF-MV. As other 
translators and compilers, it has simple GUI to read an input EDIF file 
and to store the transformed output BLIF-MV file. The console at the 
bottom shows the transformation process in steps, i.e., EDIF Opening 
⇒ Parsing ⇒ Pre-processing ⇒ Translation ⇒ BLIF-MV Saving. It is now 
embedded into CVEC.

4.3. [Phase III] VIS equivalence checking

In this phase, CVEC first transforms Verilog4VIS program into BLIF-
MV program using vl2mv translator in VIS. Then it performs VIS-based 
equivalence checking upon two BLIF-MV programs, transformed from 
the Verilog4VIS program and the EDIF program, respectively. Then it 
automatically executes a series of VIS commands to perform sequential 
equivalence checking. ⟨Fig.  9⟩ shows a set of VIS commands to perform 
the sequential equivalence checking upon the Verilog4VIS and the EDIF 
programs used in the case study in Section 4. CVEC automates a series 
of all commands with a simple graphical user interface as depicted in 
6 
Fig. 8. The EDIFtoBLIF-MV translator.

⟨Fig.  10⟩. In ⟨Fig.  10⟩, VIS equivalence checking determines that the 
two programs are not sequentially equivalent as ‘‘Networks are NOT 
sequentially equivalent.’’. It also shows a verification result of 6 steps 
(i.e., a counterexample) which simulates an inequivalent state from the 
initial state step-by-step. 

Fig. 9. A series of the VIS commands and a verification result from the VIS (excerpted).

Fig. 10. The CVEC’s main window.

An in-depth analysis of the counterexample allows a detailed exam-
ination of the cause of the inequivalence. The example demonstrates 
that the VIS discards overflowed values during the vl2mv translation, 
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whereas the Synopsys Synplify Pro synthesizes the overflowed param-
eter values fairly well. To enhance understanding, we excerpted and 
modified the verification results graphically, as VIS lacks a graphical 
interface. We can notice that all repeated information is omitted and 
we have to reorganize it in order to understand the error trace clearly. 
The verification results are then analyzed in the following phase.

4.4. [Phase IV] Post-analysis and visualization

Lastly, CVEC processes the results of the VIS-based equivalence 
checking and performs additional analyses. If the verification succeeds 
(i.e., two BLIF-MV programs are equivalent), we can assure that the 
synthesis process from Verilog to EDIF (i.e., Netlist) was performed 
correctly for the given Verilog program. If the verification fails (i.e.,
two BLIF-MV programs are not equivalent), it indicates that there was 
an issue in the synthesis process. In such cases, VIS provides a scenario 
comprising a sequence of inputs and internal states/variables that 
leads to the inequivalent state, i.e., a counterexample. Unfortunately, 
VIS presents it on the console in a textual format, omitting repeated 
or unchanged details, which makes understanding the prompt almost 
impossible. However, CVEC offers post-analysis functions to reorganize 
and visualize the data in various formats to enhance understanding.

⟨Fig.  10⟩ shows the CVEC GUI performing all phases on a single 
window. Verilog4VIS Checker and EDIFtoBLIF-MV  are embedded, al-
lowing all transformations and equivalence checking to be performed 
mechanically and seamlessly with just a few button clicks. The series 
of the VIS commands and analysis on the verification results shown in 
⟨Fig.  9⟩ can be performed mechanically by CVEC, as illustrated.

If the verification fails, CVEC analyzes the counterexample (i.e.,
reconstructs skipped information) and visualizes it in various formats 
such as flow-chart, table and text on console. The visualization helps 
identifying the cause of the inequivalence between the Verilog design 
and the synthesized EDIF. We are working on improving the post-
analysis and visualization to provide more convenience and useful 
information to analyzers.

5. Case study

We performed a case study with two types of RPS BP software in 
DI&C systems of Korean nuclear power plants, in order to demonstrate 
the effectiveness and potential of the customized VIS-based equivalence 
checker, CVEC. Using CVEC, the case study aimed to demonstrate 
the correct functioning of the commercial FPGA logic synthesis tool
Synopsys Synplify Pro in the Libero IDE EDA environment. If CVEC
succeeds to prove the behavioral equivalence between Verilog and 
EDIF, we can claim that the tools function correctly, at least for the 
given input program. ⟨Fig.  11⟩ summarizes the whole process of the 
case study. 

The first example is an FBD program for a preliminary version 
of KNICS APR-1400 RPS BP (Korea Atomic Energy Research Institute 
(KAERI), 2006), while the second example is a Verilog program of 
the PLD-based RPS BP (Choi and Lee, 2012). The first one is much 
complicated and detailed than the second one, since it is kind of a 
mock-up of commercial nuclear power plants. They both consist of 18 
independent shutdown logics. The BP softwares read 18 external sensor 
inputs and make a decision whether to shutdown nuclear reactors or 
not, periodically. Since the BP software is one of the most safety-
critical components in DI&C of nuclear power plants, standards and 
regulations (U.S. Nuclear Regulatory Commission, 1996b, 2012; Elec-
tric Power Research Institute (EPRI), 2014, 1996) strictly encourage 
developers to verify its correct and safe functioning.

[Case study I] begins with an FBD program, as the implemen-
tation platform for the KNICS APR-1400 RPS BP is a programmable 
logic controller (PLC). We first had to transform the FBD program into a 
7 
Fig. 11. An overview of the case study with two examples.

behaviorally-equivalent Verilog program. FBDtoVerilog v2.1 embedded 
in FBD Editor (Lee et al., 2014) reads the FBD program and mechan-
ically translates it into a behaviorally-equivalent Verilog program. On 
the other hand, [Case study II] starts from a Verilog program, and 
we do not need such transformation.

5.1. [Case study I] KNICS APR-1400 RPS BP

It uses 5 shutdown logics of the KNICS APR-1400 RPS BP, e.g., fixed 
set-point rising/falling trip, variable set-point rising/falling trip and manual 
reset trip. They can represent the whole 18 shutdown logics in BP. The 
maximum size of all variables in the BP is 16 bits. ⟨Table  1⟩ summarizes 
important features of the input Verilog program and the synthesized 
EDIF.

The table also presents the verification result and the time taken 
by the VIS verification system. In case of the simple logics such as
fixed set-point rising/falling logics, the VIS could perform the equivalence 
checking in reasonable time, e.g., 198.22 and 30.11 s, respectively. 
The transformations time is not considered here. On the other hand, 
for more complex logics, such as variable set-point rising/falling trip, the 
maximum size of all variables is 9 bits. The VIS successfully completed 
the equivalence checking for these logics in 5613 s (about 90 min). 
For all 5 logics, the VIS proved that the Verilog and the subsequently 
synthesized EDIF are equivalent for all cases.

We also performed a comparison analysis with the commercial 
equivalence checker FormalPro. As Formal Pro cannot work for the
Synopsys Synplify Pro, we had to use Precision FPGA. Although the 
comparison is not entirely precise, we expect that it is generally ac-
ceptable. FormalPro produced the same result as CVEC for all logic 
cases. ⟨Fig.  12⟩ indicates that the commercial tool is faster than the 
proposed technique in several orders of magnitude. As shown in ⟨Fig. 
12⟩ and ⟨Table  1⟩, the CVEC verification performance decreases sharply 
as the number of reg and latch increase. As CVEC uses the VIS ver-
ification engine, it is not straightforward to improve the verification 
performance (i.e., time) dramatically, but we are planning to improve 
the verification performance of CVEC, including development of an 
equivalence checking engine from scratch. 

In summary, CVEC could judge that ‘‘The FPGA logic synthesis tool 
worked correctly for the Verilog programs of 5 trip logics in KNICS APR-
1400 RPS BP.’’ Further consideration to improve the verification per-
formance will be addressed in Section 4.3.
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Table 1
A summary information of the case study I.

5.2. [Case study II] The RPS trip logics based on PLD technology

In this case study, CVEC uses the Verilog programs developed for 
an experimental RPS (Choi and Lee, 2012), based on Programmable 
Logic Device (PLD) technology such as FPGA. The target is a system 
8 
Fig. 12. The comparison of verification time in seconds (CVEC with VIS vs. FormalPro) 
for fixed set-point rising trip logic.

with 18 trip logics as commercial RPS BPs, but it is an experimental 
system consisting of fundamental functionalities. ⟨Table  2⟩ summarizes 
important features of all inputs and outputs and verification results 
of 18 trip logics. All logics were verified through CVEC, and the 
comparison with Formal Pro was also performed.

CVEC found two non-equivalent cases for Lo_SG1_ESF_FSF and
Lo_SG2_ESF_FSF trip logics, whereas FormalPro with Precision FPGA
judged that they were equivalent. An in-depth analysis found the reason 
that the VIS (actually vl2mv in the VIS) has an error at interpreting pa-
rameters in Verilog. If a conditional statement includes an arithmetic 
operation of parameters, such as + or -, the VIS restricts the size of 
the result of the arithmetic operation into the maximum size of the 
parameters, without notification.

For example, the Verilog program in ⟨Fig.  13⟩ reads an input in
[3:0] and checks ‘‘if(in > a+b)’’. The parameter a and b are defined 
with 3 of 2 bits (i.e, b11). The condition statement is then equivalent to 
‘‘if(in > 6)’’. However, the vl2mv translator interprets the statement as 
‘‘if(in > 2)’’ since the maximum size of two parameters is 2 bits and the 
maximum size of the + operation is also regarded as 2 bits. 6 (b1010) 
is truncated into 2 (b10).

The figure also shows the simulation trace of the Verilog program 
with the VIS and the subsequently synthesized EDIF with ModelSim. 
In the VIS simulation of the Verilog program, out gets changed into 1 
when the input in becomes greater than 2 not 6. The value of out (i.e.,
the calculation result) can be recognized at the next simulation step 
in the VIS. On the other hands, ModelSim shows that the out is only 
changed into 1 when in is greater than 6, as intended by the Verilog 
program.

Fig. 13. A Verilog program demonstrating the reason of the non-equivalence.
In summary, CVEC checked 18 trip logics of Verilog program for an 

experimental RPS logics in Korea, and found 2 cases of non-equivalence 
between the Verilog programs and subsequently synthesized EDIFs. 
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Table 2
A summary information of the case study II.

An in-depth analysis, however, found that the two non-equivalence 
resulted from incorrect operation of the VIS (actually the vl2mv trans-
lator), and a simple remedy such as replacing ‘‘a + b’’ with 6 could 
resolve the non-equivalence. Therefore, CVEC could judge that ‘‘The 
FPGA logic synthesis tool functioned correctly for the Verilog programs of 18 
trip logics in an experimental RPS BP.’’ The verification performance was 
reasonably acceptable for the PLD-based 18 trips logics of RPS BP, since 
the system do not include implementation details such as operation 
bypass, periodic tests or heart bits.

5.3. Further consideration on the verification performance

The proposed technique CVEC uses the verification engine of the 
VIS to prove the behavioral (i.e., sequential not combinational) equiv-
alence between RTL designs in Verilog and Netlists in EDIF. VIS is an 
open-source, widely-used tool that has been successfully utilized and 
validated by many researchers in public. Those success stories clearly 
demonstrate the value of VIS as one of the mature equivalence checker 
among various tools in HWMCC (Hardware Model Checking Competi-
tion) (Johannes Kepler University Linz, 2015), even though the tool is 
since been upgraded to newer versions (ABC (Brayton and Mishchenko, 
2010) and IImc (University of Colorado at Boulder, 2016)).

There are several commercial formal verification tools which can 
be used for our purpose – ‘‘Correctness verification of commercial FPGA 
logic synthesis tools.’’ FormalPro (Siemens, 0000a), Conformal Equiva-
lence Checker (Cadence, 2017) and Formality (Synopsys, 2019) are 
the candidates. However, they require additional information such 
as register/variable matching or libraries from synthesis tools. Which 
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means, we cannot use the tools without vendor’s support. For instance, 
we cannot use FormalPro for Libero IDE with Synopsys Synplify Pro
synthesizer, which was the combination of the project we were working 
on.

Since CVEC is based on the VIS verification engine, it is tightly 
coupled with the input front-end BLIF-MV as well as the sequential 
equivalence checking engine of the VIS. As sequential equivalence 
checking has inherent limitations on the size of targets and verification 
speed (Brand, 2003), commercial tools often use combinational equiv-
alence checking hierarchically through decoupling sequential logics 
into combinational ones (Rahim et al., 2012). They also use additional 
information such as Formal Verification Interface (FVI), Tcl script, 
Synopsys setup Verification File (SVF) and various libraries to make 
the strategy possible. CVEC, on the other hand, requires no additional 
information. It only needs transformation of a Verilog program into a
Verilog4VIS program, which is the results from the limitation due to the 
in-house translator vl2mv in the VIS.

We are planning to improve the verification performance of CVEC
in two ways. First, we plan to explore the use of combinational equiv-
alence checking instead of sequential one, following the approach 
commonly adopted by typical commercial equivalence checkers. The 
decision to use the VIS verification engines or to develop a new solution 
from scratch should be made after conducting an in-depth analysis. 
Secondly, the input front-end BLIF-MV can be replaced with AIGER (Jo-
hannes Kepler University Linz, 2011), which can handle various input 
formats successfully. AIGER is a format, library, and set of utilities 
for And-Inverter Graphs (AIGs), providing a convenient and compact 
representation for circuits. It is known to describe combinational and 
sequential circuits efficiently.

6. Conclusion and future work

This paper proposes a customized VIS-based equivalence checker
CVEC which can contribute to the correctness demonstration of the 
combination – the Synopsys Synplify Pro synthesizer in the Libero IDE
EDA. CVEC can formally check the behavioral equivalence between a 
Verilog HDL and a Netlist (i.e., EDIF) synthesized in this environment. 
It uses the VIS verification system as a verification engine, and also 
provides two model transformations and a rule checker. It also pro-
vides a graphical interface to perform all transformations mechanically 
and analyze verification results visually and efficiently. If the formal 
verification with CVEC succeeds, then we can claim that the logic 
synthesis from Verilog into EDIF worked correctly at least for the given 
Verilog program. Therefore, CVEC can verify the functional correctness 
of FPGA synthesis tools through equivalence checking, which is one of 
the ways to dedicate COTS items used in safety-related applications.

In order to demonstrate the effectiveness and applicability of the 
proposed technique, we performed a case study with two examples of 
RPS BP (Bistable Processor) programs excerpted from Korean nuclear 
power plants. We also tried to compare the performance of CVEC with a 
commercial verification tool FormalPro, although we had to change the 
logic synthesis tool into Precision FPGA. The comparison indicates that 
the commercial tool is faster than the proposed technique in many or-
ders of magnitude. It is not straightforward to improve the verification 
performance dramatically, since CVEC uses the VIS verification engine 
and the input front-end if VIS, vl2mv. We are planning to strategically 
adopt combinational equivalence checking, similar to other commercial 
tools, and are also considering replacing BLIF-MV with AIGER. We also 
have a plan to develop a dedication of different commercial grade 
FPGAs, focusing on addressing different types of FPGAs in the SMR 
design to mitigate the common cause failure (CCF) problem.
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Appendix. Examples of the translations from EDIF to BLIF-MV

In this appendix, the examples of the translations according to EDIF 
to BLIF-MV translation rules, Rule 1 to Rule 5, presented in Sec-
tion 4.2.2 are demonstrated. There are total of 11 examples, especially 
more than one example for Rule 2, Rule 3, and Rule 5, considering 
various cases dealth with in the same rule.

[Case 1] Cells

⟨Fig.  A.1⟩ demonstrates an example of translation of cells according 
to Rule 1. When the name of cell in EDIF is example_cell, then 
the name of the model in BLIF-MV is also example_cell. This cell 
would be the cell inside working library, example_library.

Fig. A.1. Example of translation of cells.

[Case 2] Ports and arrays

⟨Fig.  A.2⟩ depicts 4 examples of translations according to Rule 2. 
When there are only input and output ports in EDIF file, these input and 
output ports can simply be translated into .inputs and .outputs
in BLIF-MV, as shown in the first example. Also, there are 3 examples 
of using the keyword array inside the port. However, we do not have 
an example for array of the output ports, since such expression is not 
used in EDIF.

There is an array for input port, with index of 4, in the second 
example. If there is only one index, the starting index i automatically 
becomes 0, and the ending index becomes (i - 1). So in the second 
example, input ports named input in array with index of 4 would 
become .inputs input[0] input[1] input[2] input[3] in 
BLIF-MV.

In the third example, there is downto keyword in the array, with 
the starting index of 3 and the ending index of 0. In this case, input 
ports named input would become .inputs input[3] input[2] 
input[1] input[0], since the keyword downto shows the index 
would be in descending order.

The last example, includes the case of to keyword used in the array, 
which gives an index in ascending order. It might seem the same as 
the second example, but we can designate the starting index and the 
ending index from 1 to 4, as shown in the last example of ⟨Fig.  A.2⟩. 
The case of using the downto keyword also works the same.

[Case 3] Property functions

⟨Fig.  A.3⟩ shows 3 examples of using the keyword property function
in the cell. If the function is a sequential logic, there would exist an 
expression property isSequential ‘‘TRUE’’ in EDIF. Then this 
function is simply expressed with .reset and .latch keywords in 
BLIF-MV.

In the first example in ⟨Fig.  A.3⟩, there is a function ‘‘DFF’’, 
which means D-Flip-Flop. In this cell, the input ports are D, CLK and
RST, and the output port is Q. The RST port works as reset input signal, 
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Fig. A.2. Examples of translation of ports and arrays.

while CLK port works as clock input signal and D port means data input 
signal. Using the given input and output ports, it can be expressed as 
.reset RST Q 0 and .latch D Q DFF in BLIF-MV. .reset RST 
Q 0 means that when RST signal is activated, Q has to be reset into 
initial value 0. .latch D Q DFF means that according to data input
D, DFF is activated and the result is saved in output Q. The reason for 
omitting the input port CLK is due to the first step of pre-processing 
before translation into BLIF-MV, as stated in Section 4.2.1.

On the other hand, if there is no expression of isSequential 
"TRUE", then the function would be combinational logic, i.e., the cell is 
a combinational cell. If the cell is a combinational cell, then the ⟨truth 
table of functionality⟩ must be represented.

In the second example of ⟨Fig.  A.3⟩ uses AND2 gate, which means 
there are 2 operands with AND operator. After the keyword .table, 
the name of input ports (i.e., A B) are listed and then output port (i.e.,
X) is placed after them. The truth table is represented in translation 
result in the right-hand side of the table, under the .default 0 line. 
In here, an example of AND gate using operand A and B is expressed.

In the last example of ⟨Fig.  A.3⟩, multiple operators are used. There 
is a function of A & (B + C). In this case, an expression of .table A 
B C X is used. A postfix notation, which would express the function A & 
(B + C) in ABC+&, is used internally during the translation from EDIF 
to BLIF-MV. Then the truth table is represented after the .default 0
line, same as the second example.

[Case 4] Cells including instances

⟨Fig.  A.4⟩ demonstrates an example of Rule 4. When there is an
instance in the cell, it would be translated into .subckt in BLIF-MV. 
In the example, there are input ports A and B, and output port X. Also 
there is instance U1 in the contents, and cellRef AND2 is in the viewRef 
inside the instance U1. These are translated as .subckt AND2 U1 A 
= U1_A B = U1_B X = U1_X by following Rule 4.
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Fig. A.3. Examples of translation of property functions.

Fig. A.4. Example of translation of cells including instances.

[Case 5] cells including connections

⟨Fig.  A.5⟩ shows examples following Rule 5. When a keyword joined
only exists in the net, and keywords portRef  and instanceRef  are used, 
it would be also translated into .table in BLIF-MV.

In the first example, there is a net N1, portRefs input1 and out-
put1, and instanceRefs inst1 and inst2. When it is translated into 
BLIF-MV format, it would be expressed as .table inst1 input1 
inst2 output1, and in the next sentence, the name of instanceRef 
of input instance (i.e., inst1) has to be placed after ‘‘- =’’.

The second example deals with the case where the keyword rename
is used. In this case, net is renamed and there can exist members inside 
it. In the second example, there is a net renamed as original[1], 
and there are members memberA and memberB, and order for each 
of them is 1 and 2. The renamed name of the net becomes origi-
nal1 in BLIF-MV, and the name of members become memberA1 and
memberB2. 

Data availability

Data will be made available on request.
11 
Fig. A.5. Examples of translation of cells including connections.
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